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Abstract 

Multi-aperture or multi-subaperture antennas are fundamental to Ground Moving Target 
Indicator (GMTI) radar systems in order to detect slow-moving targets with Doppler 
characteristics similar to clutter.  Herein we examine the performance of several 
subaperture architectures for their clutter cancelling performance.  Significantly, more 
antenna phase centers isn’t always better, and in fact is sometimes worse, for detecting 
targets. 
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Foreword 
This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
author. 

 

 

 

 

 

 

 

 

Classification 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction & Background 
The intent of Ground Moving Target Indicator (GMTI) radar is generally to detect and 
locate targets moving on the ground.  A principal indicator of this is the Doppler shift of 
the target, manifesting as a pulse-to-pulse phase shift of the return echo.  Of course, from 
a moving radar platform, stationary clutter itself will exhibit similar Doppler shifts across 
a spectrum defined by the antenna beam pattern, the look direction, and the platform’s 
velocity vector. 

For slow-moving targets, discriminating the response of a legitimate moving target from 
the response of otherwise stationary clutter at the same Doppler frequency becomes 
problematic.  The conventional approach to this is to augment Doppler measurements 
with Direction of Arrival (DOA) measurements from a multi-aperture, or multiple 
subaperture antenna.  Essentially, any pixel for which its DOA doesn’t match the DOA 
corresponding to the stationary clutter element for that particular Doppler frequency is 
considered moving.   

The basic idea then for detecting a moving target is to place a DOA null in the direction 
of the stationary clutter echo, and then ascribing any sufficient residual energy that 
‘leaks’ through this to a moving target.  Of course, a finite antenna aperture width cannot 
support an arbitrarily narrow notch surrounding the null.  Consequently, echo energy 
from targets that are moving too slowly will also be attenuated by the sidewalls of the 
DOA notch.  We are then clearly interested in “How slow is too slow?”  That is “Just 
how wide are the notches that surround the null?” 

A reasonable question for GMTI system design is “What is the nature of the notch that 
surrounds the null?”  Specifically, we desire to understand the relationship of the notch 
characteristics to other antenna parameters, such as aperture size and number of 
subapertures, or phase centers.  This understanding will then define system performance 
limits and influence antenna requirements. 

We note that in this report, we are more concerned with ‘detecting’ moving targets, and 
not necessarily locating them.  As a consequence, we are principally interested in the 
nature of a single DOA notch for the purposes of nulling clutter. 

We stipulate that measuring the DOA towards a moving target can be cast as a null-
steering problem for a second null.  For details, we refer the reader to a companion report 
by the authors.1  
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Monopulse Antennas 

It is difficult to discuss DOA measurements using multi-aperture or multi-subaperture 
antennas without addressing monopulse antennas.  A bible in the field is a book by 
Sherman,2 with a later edition by Sherman and Barton.3 

While conventional wisdom tends to associate “monopulse” with merely two antenna 
phase centers (or equivalent) in any one dimension, in fact Sherman clearly advocates a 
definition taken from the IEEE Standard on Radar Definitions,4 where monopulse is “A 
radar technique in which information concerning the angular location of a target is 
obtained by comparison of signals received in two or more [emphasis added] 
simultaneously antenna beams.” 

As such, the purist will understand that any multi-aperture, or multi-subaperture, antenna 
construct may in fact be called a monopulse antenna if the intent is to ascertain DOA 
from a common pulse or pulses.  Consequently, this report does indeed discuss 
monopulse antennas.  Nevertheless, to avoid confusion with the more pedestrian 
understanding, and with apologies to the purists, we will tend to sometimes employ 
alternate verbiage to emphasize more general concepts.  Even so, we will at other times 
relate our discussion to more common monopulse terms. 
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2 Simple Notched Pattern 
We begin this discussion by making for the moment several simplifying assumptions.  
These include 

• The clutter is absolutely stationary.  That is, there is no clutter motion with respect 
to its location; either translational, rotational, or oscillatory. 

• In a range-Doppler map, the clutter direction is perfectly known for each location 
in the range-Doppler map.  This assumption also means that we will not consider 
adaptive techniques in this report. 

• The antenna will have essentially a continuum of elementary phase centers across 
a finite total aperture.  Furthermore, we have access to independently process this 
continuum of phase centers. 

• We desire an antenna (with attendant processing system) that will allow nulling 
the stationary clutter and allow passage of all echo energy from all moving 
objects at different DOA, regardless of how close, and regardless of velocity.  Of 
course, we are concerned with line-of-sight velocity. 

Consequently, we desire an antenna pattern, whether real or processed, that offers the 
following characteristics. 

1. A true null with zero gain in a programmable (or processed) direction. 

2. A ‘notch’ around the null that is of minimum width, preferably zero-width. 

3. A constant-gain in all other directions. 

Later, we will modify these or add additional constraints. 

2.1 The Signum Model 

One simple function that meets our criteria and exhibits a zero-width notch around a null 
is the signum function.  This is defined as 

( )
1 for 0

sgn 0 for 0
1 for 0

z
z z

z

+ >
= =
− <

 . (1) 

We construct an antenna pattern that has a programmable null direction with the function 

0sgnP j θ θθ
λ λ∆

−   = −      
,  (2) 

where 
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θ  = the independent variable that is the direction of interest, 
0θ  = the direction of the desired null, and 

λ  = nominal wavelength of the signal (positive real value). (3) 

We have included the scaling by j−   with some malice of forethought.   

We recall that the antenna aperture illumination function and the far-field antenna pattern 
constitute a Fourier Transform pair.  Specifically, we identify for a generic pattern 

( )
2j x

P p x e dx
θp
λθ

λ

−  = 
  ∫  , and 

( )
2j x dp x P e

θp
λθ θ

λ λ
 =  
 ∫ , (4) 

where 

( )p x  = aperture illumination function for a flat or linear aperture, and 
x = the independent variable that is the position along the aperture. (5) 

We identify this relationship with the shorthand 

( )p x P θ
λ

 ⇔  
 

. (6) 

Purists will note that θ  should really be sinθ , but for most microwave radar systems, the 
small angle approximation will suffice. 

Accordingly we identify the Fourier Transform pair 

02 01 sgn
j x

e j
x

θ
π
λ θ θ

π λ
− ⇔ −  

 
. (7) 

Consequently, to achieve a far-field antenna pattern as given in Eq. (2), we need an 
aperture illumination function given by 

( )
021 j x

p x e
x

θ
p
λ

p∆ = . (8) 

This aperture illumination function is illustrated in Figure 1. 
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Figure 1.  Aperture illumination for signum model antenna pattern. 

We note several observations. 

• This aperture illumination exists for all x, except 0x = .  That is, we require an 
aperture of infinite extent. 

• The null is steered by the phase ramp applied across the aperture. 

• Apart from the steering of the null, there is no other phase variation in the 
aperture illumination function.  That is, the shape of the null in the far-field 
pattern is all about the amplitude distribution across the aperture. 

• There is a tacit assumption here that small angle approximations are valid.  This is 
more convenience for us than a significant restriction. 

2.2 Finite Aperture Effects 

Now consider an aperture illumination function of the previous section, but limited to a 
finite aperture length.  Accordingly we now assume an aperture illumination function 
given by 

( )
021 rect

j x xp x e
x D

θ
p
λ

pD
 =  
 

, (9) 

where 

( )
1 for 1 2

rect
0 else

z
z

 <= 


. (10) 

and 

D  = the linear size of the aperture. (11) 

We will make the reasonable assumption that the aperture size is large compared to the 
wavelength.  This is generally consistent with our small angle approximation.  That is 

( )p x∆

( )p xΣ

x
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D λ>> . (12) 

This aperture illumination yields a far-field antenna pattern described by 

0sgn * sincP j D
D

θ θθ θ
λ λ λD

 −   = −          
,  (13) 

where  

( ) sinsinc zz
z
π

π
= , (14) 

and in this context the ‘*’ denotes convolution.  Note that this sinc function is the far-
field pattern for a uniformly illuminated aperture, albeit steered to the null direction, and 
is often referred to as the ‘sum’ or ‘reference’ pattern.  Specifically we identify the 
aperture illumination and sum far-field pattern as 

( )
02

rect
j x xp x e

D

θ
p
λ

Σ
 =  
 

, and 

0sincP D
D

θ θθ
λ λΣ

 −  =   
   

. (15) 

These aperture illumination functions are illustrated in Figure 2. 

 

 

 

 
Figure 2.  Aperture illumination for signum model antenna pattern with finite aperture. 

We observe the following. 

( )p x∆

( )p xΣ

x2D2D−
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• The convolution ‘smears’ the signum function, thereby restricting the rate of 
change in the far-field pattern as a function of angle.  

• The transition region of the signum function has been widened to on the order of 
the width of the sum pattern mainlobe, namely Dλ . 

• The null still exists, even in the same place as before. 

• As a consequence of the widening of the transition region, the notch that 
surrounds the null has been widened.   

• The widening of the notch depends on the total aperture width.   

• Since the sum pattern represents the radar’s transmitted signal’s antenna pattern, 
we are typically interested only in the region of the mainlobe of the sum pattern. 

These features are illustrated in Figure 3.  Recall that we have assumed an ideal case and 
not yet entertained any discrete subapertures. 

We state here that for Figure 3 and all subsequent figures, we will identify 

BW Dθ λ=  = reference beamwidth. (16) 

2.3 Normalized Notch Pattern 

Heretofore we have dealt with far-field patterns that have unit gain.  This is typically not 
the case for real antennas.  Furthermore, echo energy will also manifest a two-way 
antenna pattern and target scene reflectivity fluctuations.  Consequently, in practice, the 
notched pattern response is typically normalized to the sum pattern response.  We then 
identify the normalized notched pattern as 

( )

( )

P P
P

j P P

θ θ γ θ
θ λ λ

θ θλ γ θ
λ λ

∆ Σ

∆ Σ

Σ Σ

   
        =      
   
   

. (17) 

where 

( )γ θ  = target reflection response. (18) 

The numerator is the two-way notch pattern response from the target scene, and the 
denominator is the two-way sum pattern response from the target scene.  This of course 
reduces to 
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Figure 3.  The far-field pattern of a uniformly illuminated aperture along with the notched pattern 
given by Eq. (13), and normalized notched pattern given by Eq. (19). 

 
Figure 4.  The far-field patterns of Figure 3 plotted on a linear scale, and zoomed to the region of the 
mainlobe of the sum pattern. 
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P
P

j P

θ
θ λ

θλ
λ

∆

∆ Σ

Σ

 
    =    
 
 

. (19) 

The dependence on target scene reflectivity has been eliminated.  We recognize that the 
sum pattern is real-valued and the notch pattern is imaginary (in the sense of a 2π  
phase, and not in the sense of “Puff the magic dragon”).  This will hold for the remainder 
of this report.  Consequently, with malice of forethought, we have included a division by 
j to keep this normalized notch pattern real-valued. 

We illustrate this normalized notch pattern also in Figure 3.  Note that in the central part 
of the mainlobe of the sum pattern, the normalized notch pattern essentially tracks the 
unit gain notch pattern. 

In monopulse radar literature, the normalized notch pattern is typically referred to as the 
“normalized error signal” or “normalized difference signal.” 

2.4 Notch Width 

It is difficult to discuss the width of the notch without some specific measure or metric 
for the notch width.  A somewhat arbitrary but nevertheless common measure for multi-
aperture GMTI processing is the width of the notch in the notched spectrum as measured 
at −5 dB with respect to the far-field sum pattern peak.5, 6  We note that a reduction of 5 
dB in receiver antenna gain for a monostatic radar exhibiting a quartic range dependence 
requires a 25% range reduction to maintain Signal-to-Noise Ratio (SNR).  

Herein we will also adopt this measure.   

Such a measure might be considered the resolution of the null, analogous to the more 
familiar resolution of a peak response. 

The −5 dB line is also illustrated in Figure 3.  We note that the −5 dB notch width (scaled 
to unit sum pattern mainlobe width) is 0.59.  Perhaps also of interest is that the notch 
width in the normalized notch pattern, that is the “normalized notch width,” is 0.52. 

2.5 Notch Pattern Slope 

Not easily appreciated with the ‘dB’ scale in Figure 3 is the nature of the slope of the 
notch.  Consequently we re-plot elements of Figure 3 on a linear scale in Figure 4. 

We make some observations here. 
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• We note in particular that the normalized notch pattern, as well as the notch 
pattern itself (scaled to unit gain and unit reference beamwidth), exhibit a slope of 

2−   at the center of the sum pattern, in the vicinity of the null. 

• Furthermore, the slope is monotonic and reasonably linear for a large portion of 
the sum pattern mainlobe width.   

• The notch slope is in fact a measure of how narrow is the notch.  A steeper slope 
corresponds to a narrower notch. 

• By measuring the value of the ratio of notch pattern response to sum pattern 
response, we can effectively determine the angular offset from boresight of a 
target echo signal, regardless of its reflectivity.  The steeper is the slope, the more 
sensitive we are to angular offsets. 

• In monopulse antenna literature, this notch slope is identically the well-known 
monopulse slope of the antenna. 

2.6 Some Comments 

While we have met our stated design criteria for a notched antenna pattern, we 
nevertheless face some serious issues with this particular construct.  We offer the 
following observations. 

• The aperture illumination function for the notched pattern ( )p x∆  contains a 1 x  
taper characteristic that is not realistic to generate. 

• A real antenna will ultimately have a limited effective area.  This in turn places a 
limit on maximum achievable gain, which in turn places a finite limit on the area 
under the curve given by ( )p x∆ .  The given ( )p x∆  does not meet this 
constraint. 

• Further analysis of the aperture illumination function reveals that the width of the 
notch is principally a function of the aperture diameter D , indicating that it is the 
‘outside’ parts of the illuminated aperture that contribute most to the far-field 
pattern notch width. 

• Further analysis of the aperture illumination function also reveals that it is the 1 x  
taper characteristic towards the center of the aperture is principally involved with 
the role of a uniform magnitude far-field pattern away from the notch. 

• Our constraint for the notched pattern has been to attempt a constant non-zero 
response to all angles except in the direction of the null.  As a practical matter, for 
a monostatic antenna there is no need to achieve this response for directions 
outside of the main beam of the sum pattern.  Consequently this over-constrains 
our design, and potentially adversely affects the achievable notch width. 
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3 Constrained Aperture for Notched Pattern 
We now modify our design criteria for a notched antenna pattern to embody the 
following characteristics. 

1. A true null with zero gain in a programmable (or processed) direction. 

2. A ‘notch’ around the null that is of minimum width, preferably zero-width. 

3. A gain in other directions that is as near to unity as possible within the 
neighborhood of the sum pattern mainlobe, subject to the constraint on the 
notched pattern aperture illumination function as follows. 

( ) ( )p x dx p x dx
∞ ∞

∆ Σ
−∞ −∞

=∫ ∫   (20) 

This is a necessary constraint for a limited-gain antenna, where sum pattern aperture is 
the same effective size as the notched pattern aperture.  We do not quibble about whether 
we can introduce a constant relative scale factor in this equation.  The point is that the 
apertures need to be finite and this suffices for our thought experiment. 

Recall from the last section that it is the outside of the aperture that contributes the most 
to narrowing the notch width.  Consequently we take a cue from the interferometry body 
of knowledge, and choose the aperture illumination function for the notched far-field 
pattern as  

( ) ( )
02

sgn
2 2 2 2

j x D D D Dp x x e x x
θ

p
λ δ δD

    = − + +        
, (21) 

where 

( )zδ  = Dirac delta function. (22) 

This aperture illumination yields a far-field antenna pattern described by 

0sin
BW

P jD θ θθ π
λ θD

 −  = −   
   

. (23) 

We will examine two different sum or reference patterns. 
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3.1 Most Narrow Sum Pattern 

The first sum pattern we describe essentially uses the same phase centers as the notched 
pattern’s aperture illumination function.  That is, we define and identify the aperture 
illumination function and its far-field pattern as 

( )
02

2 2 2 2

j x D D D Dp x e x x
θ

p
λ δ δΣ

    = − + +        
, and 

0cos
BW

P D θ θθ π
λ θΣ

 −  =   
   

. (24) 

The normalized notched pattern is then described by 

0

0

sin

cos

BW

BW

DP
P

j P D

θ θθ π
θθ λ

θλ θ θπλ θ

D

D Σ

Σ

 −  −        = =     − 
      

. (25) 

This can be further simplified to 

0tan
BW

P θ θθ π
λ θ∆ Σ

 −  = −   
   

. (26) 

The aperture illumination functions are illustrated in Figure 5.  The corresponding 
patterns are shown in Figure 6 and Figure 7. 

 

 

 
Figure 5.  Aperture illumination for impulse response sum and delta channels. 

( )p x∆

( )p xΣ

x2D2D−
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Figure 6.  The far-field sum pattern of a dual-impulse aperture along with the notched pattern given 
by Eq. (23), and normalized notched pattern given by Eq. (26). 

 
Figure 7.  The far-field patterns of Figure 6 plotted on a linear scale, and zoomed to the region of the 
mainlobe of the sum pattern. 
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We make the following observations. 

• The normalized notch pattern, as well as the notch pattern itself (scaled to 
equivalent gain and unit reference beamwidth), exhibit a normalized monopulse 
slope of π−   at the center of the sum pattern, in the vicinity of the null.   

• This is a steeper notch slope than in the previous section. 

• The −5 dB notch width is 0.38, with normalized notch width of 0.33. 

• The aperture illumination function for both the sum pattern ( )p xΣ  and notched 

pattern ( )p x∆  contain two omnidirectional impulse functions. 

• The impulse nature of both far-field patterns generates grating lobes that yield 
ambiguous directional responses.  This isn’t so good, and a common problem of 
interferometers. 

 

3.2 Uniform Sum Pattern 

We now return to a sum pattern described by a uniformly illuminated aperture.  That is, 
we define and identify the aperture illumination function and its far-field pattern as 

( )
02

rect
j x xp x e

D

θ
p
λ

Σ
 =  
 

, and 

0sinc
BW

P D θ θθ
λ θΣ

 −  =   
   

. (27) 

The normalized notched pattern is then described by 

0

0

sin

sinc

BW

BW

P
P

j P

θ θθ π
θθ λ

θλ θ θ
λ θ

∆

∆ Σ

Σ

 −  −        = =     − 
      

. (28) 

This can be further simplified to 

0

BW
P θ θθ π

λ θ∆ Σ
 −  = −   

   
, (29) 

although we recognize some difficulties in the immediate neighborhood of the nulls. 
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The aperture illumination functions are illustrated in Figure 8.  The corresponding 
patterns are shown in Figure 9 and Figure 10. 

We make the following observations. 

• The normalized notch pattern, as well as the notch pattern itself (scaled to 
equivalent gain and unit reference beamwidth), exhibit a normalized monopulse 
slope of π−   at the center of the sum pattern, in the vicinity of the null.  
Interestingly, this slope is exactly linear well beyond the nominal beamwidth of 
the sum pattern. 

• This is still a steeper notch slope than in the previous section. 

• Only the aperture illumination function for the notched pattern ( )p x∆  contains 
two impulse functions.  While we can probably conjure some architectures where 
this is approachable, the taper characteristic is probably still not all that realistic to 
generate. 

• The −5 dB notch width is still 0.38, with normalized notch width of 0.36. 

 

 
Figure 8.  Aperture illumination for impulse response delta channel and uniform sum channel. 

 

3.3 Some Comments 

We offer the following observations. 

• For the architectures considered, the notch width is purely a function of the 
notched pattern’s aperture illumination.   

• The sum pattern merely serves to select a particular portion of the notched pattern 
as significant.   

  

( )p x∆

( )p xΣ

x2D2D−
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Figure 9.  The far-field pattern of a uniformly illuminated aperture along with the notched pattern 
given by Eq. (23), and normalized notched pattern given by Eq. (29). 

 
Figure 10.  The far-field patterns of Figure 9 plotted on a linear scale, and zoomed to the region of 
the mainlobe of the sum pattern. 
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4 Continuous Uniform (Non-Tapered) Aperture 
We now modify our design criteria for a notched antenna pattern to embody the 
following characteristics. 

1. A true null with zero gain in a programmable (or processed) direction. 

2. A ‘notch’ around the null that is of minimum width. 

3. A gain in other directions that is as near to unity as possible within the 
neighborhood of the sum pattern mainlobe, subject to the constraint on the 
notched pattern aperture illumination function as follows, at least in the limit. 

( ) ( ) rect xp x p x
DD Σ

 = =  
 

. (30) 

Here we constrain that any one elemental position in the sum pattern aperture exhibits the 
same magnitude gain as the respective elemental position in the notched pattern aperture.  
The only difference is in the phase between the two apertures. 

Consequently we identify the aperture illumination function for the notched far-field 
pattern as  

( ) ( )
02

sgn rect
j x xp x x e

D

θ
p
λ

D
 =  
 

. (31) 

We observe that this meets the constraint of Eq. (30) except strictly at 0x = .  However, 
in the limit the constraint does hold.  This aperture illumination yields a far-field antenna 
pattern described by 

0
* sinc

BW

jP Dθ θ
θ θλ θπ
λ

D
 −  =    −     

 

. (32) 

This can be calculated to the closed-form given by 

0

0

1 cos
BW

BW

P jD

θ θπ
θθ

λ θ θπ
θ

D

   −
−         = −    −       

. (33) 

The sum pattern remains described by 
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( )
02

rect
j x xp x e

D

θ
p
λ

Σ
 =  
 

, and 

0sinc
BW

P D θ θθ
λ θΣ

 −  =   
   

. (34) 

The attractiveness here is that each antenna elemental position in the respective apertures 
has the same magnitude gain, and differs between sum and notch patterns only in phase. 

The normalized notched pattern is calculated to be 

0

0

1 cos

sin

BW

BW

P
P

j P

θ θθ π
θθ λ

θλ θ θπλ θ

∆

∆ Σ

Σ

   −  −             = = −         −            

, (35) 

The aperture illumination functions are illustrated in Figure 11.  The corresponding 
antenna pattern plots are given in Figure 12 and Figure 13. 

We make the following observations. 

• The normalized notch pattern, as well as the notch pattern itself (scaled to 
equivalent gain and unit reference beamwidth), exhibits a normalized monopulse 
slope of ( )2π−   at the center of the sum pattern, in the vicinity of the null.   

• This is a less steep notch slope than in any of the previous sections. 

• The −5 dB notch width is 0.83, with normalized notch width of 0.65. 

• This aperture illumination function for the notched pattern ( )p x∆  is, however, 
quite realistic to generate. 

 

 
Figure 11.  Aperture illumination for uniform delta channel and uniform sum channel. 

( )p x∆

( )p xΣ

x2D2D−
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Figure 12.  The far-field pattern of a uniformly illuminated aperture along with the notched pattern 
given by Eq. (32), and normalized notched pattern given by Eq. (35). 

 
Figure 13.  The far-field patterns of Figure 12 plotted on a linear scale, and zoomed to the region of 
the mainlobe of the sum pattern.  
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“Out of clutter, find simplicity.” ― Albert Einstein 
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5 Sampled Uniform Aperture 
We now modify our design criteria for a notched antenna pattern to embody the 
following characteristics. 

1. A true null with zero gain in a programmable (or processed) direction. 

2. A ‘notch’ around the null that is of minimum width. 

3. A gain in other directions that is as near to unity as possible within the 
neighborhood of the sum pattern mainlobe, subject to the constraint on the 
aperture illumination functions that they are a set of equally-spaced and equal-
area samples as follows. 

( ) ( ) ( )
1

0

1 N
n

n
p x p x x x

N
δ

−

∆ Σ
=

= = −∑ , (36) 

except perhaps at 0x = .  Here, nx  are the sample positions in the overall 
aperture. 

Here we also constrain that any one elemental position in the sum pattern aperture 
exhibits the same magnitude gain as the respective elemental position in the notched 
pattern aperture, except perhaps at 0x = .  The phase between the two apertures may be 
significantly different.  The desire is to investigate a sampled version of the aperture 
illuminations described in the previous section.  Accordingly, we define the sample 
positions as 

1
2n

D D Nx n
N N

− = −  
 

, (37) 

where the sample indexed positions are identified 

 n Integers∈ , where 0 n N≤ < . (38) 

We define the aperture illumination functions as 

( ) ( )
01 2

0

1 1sgn
2

N j x

n

D D Np x x e x n
N N N

θ
p
λ δ

−

D
=

 − = − +   
  

∑ , and 

( )
01 2

0

1 1
2

N j x

n

D D Np x e x n
N N N

θ
p
λ δ

−

Σ
=

 − = − +   
  

∑ . (39) 

Note that we have placed the samples in the center of equal-length segments formed by 
dividing the larger aperture into subapertures.  For convenience, we will separately 
analyze the case of an even number of samples from the case of an odd number of 
samples. 
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5.1 Even Number of Samples 

We now concern ourselves with only even values of N.  We repeat and slightly expand 
the aperture illumination functions as 

( )

0

0

2 1 2

0

1 2

2

1 1
2

1 1
2

N j x

n

N j x

n N

D D Ne x n
N N N

p x
D D Ne x n

N N N

θ
p
λ

θ
p
λ

δ

δ

−

=
D

−

=

  −  − − +      
 =
  −  + − +       

∑

∑

, and 

( )
01 2

0

1 1
2

N j x

n

D D Np x e x n
N N N

θ
p
λ δ

−

Σ
=

 − = − +   
  

∑ . (40) 

The corresponding antenna patterns can then be calculated as 

0

0

0

2 1 2
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2

1
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D Nj nN
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N
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e

P e
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e

θ θ
π

λ
θ θ

π
λ

θ θ
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λ

θ
λ

−  − −     − −   
   =  

D −  − −     

=

 
 
 

   = −      
− 
  

∑

∑

, and 

0 01 12 2
2

0

1
D N DNj j n
N N

n
P e e

N

θ θ θ θ
ππ

λ λθ
λ

− −−      − −            
Σ

=

  = 
 

∑ . (41) 

Closed form expressions are calculated as, and simplified to 

2 0 0

0 0

1sin 1 cos
22

1 1sin sin

BW BW

BW BW

j jP
N N

N N

θ θ θ θππ
θ θθ

λ θ θ θ θππ
θ θ

∆

         − −
−            − −           = =             − −                                 

,  

and 

0

0

sin
1

1sin

BW

BW

P
N

N

θ θπ
θθ

λ θ θπ
θ

Σ

   −
         =       −            

. (42) 

We have made use of the closed form expression for a power series given as 
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2 1 2

1
1

N N N
n

n N

z zz
z=

−
=

−∑ . (43) 

The normalized pattern is calculated as 

0

0

1 cos

sin

BW

BW

P
P

jP

θ θθ π
θθ λ

θλ θ θπλ θ

∆

∆ Σ

Σ

   −  −             = = −         −            

. (44) 

The aperture illumination functions for 4N =  are illustrated in Figure 14.  The 
corresponding antenna pattern plots are given in Figure 15 and Figure 16. 

We make the following observations. 

• The normalized notch pattern, as well as the notch pattern itself (scaled to 
equivalent gain and unit reference beamwidth), exhibits a normalized monopulse 
slope of ( )2π−   at the center of the sum pattern, in the vicinity of the null.   

• This is essentially the same as the continuous uniform aperture.  The differences 
due to the sampled nature of the aperture are small. 

• The −5 dB notch width is 0.81, with normalized notch width of 0.65. 

• This aperture illumination function, although itself not realistic, does to first order 
approximate a multi-aperture antenna with four phase centers, where the impulse 
locations are the independent phase centers. 

  

 

 

 
Figure 14.  Aperture illumination for uniform sampled delta and sum channels. 
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( )p xΣ
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Figure 15.  The far-field pattern of a uniformly sampled aperture along with the notched pattern 
given by Eq. (42), and normalized notched pattern given by Eq. (44). 

 
Figure 16.  The far-field patterns of Figure 15 plotted on a linear scale, and zoomed to the region of 
the mainlobe of the sum pattern.  
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5.2 Odd Number of Samples 

We now concern ourselves with only odd values of N.  We note that with an odd number 
of samples, that the center sample falls at the center of the aperture, and will be nulled by 
the signum function in the notched pattern aperture illumination function.  The sum 
pattern aperture illumination function analysis is otherwise unaffected by even versus odd 
number of samples, so we will repeat it here for completeness.  Consequently, we repeat 
and slightly expand the aperture illumination functions as 

( )

( )

( )

0

0

2 3 2 2
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1 2

2 1 2
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N j x

n
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−

=
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  −  − − +      
 =
  −  + − +       

∑

∑
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p
λ δ

−

Σ
=

 − = − +   
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∑ . (45) 

The corresponding antenna patterns can then be calculated as 
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Figure 17.  Aperture illumination for uniform sampled delta and sum channels. 
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Closed form expressions are calculated as, and simplified to 
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. (47) 

The normalized pattern is calculated as 
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. (48) 

The aperture illumination functions for 3N =  are illustrated in Figure 17.  The 
corresponding antenna pattern plots are given in Figure 18 and Figure 19. 

We make the following observations. 

• The notched pattern for an odd number of samples approaches that for an even 
number of samples as N increases. 

• The normalized notch pattern, as well as the notch pattern itself (scaled to 
equivalent gain and unit reference beamwidth), exhibits a normalized monopulse 
slope of something less than ( )2π−   at the center of the sum pattern, in the 
vicinity of the null.  This is because of the null at 0x = . 

• The −5 dB notch width is 0.96, with normalized notch width of 0.73. 

• This aperture illumination function, although itself not realistic, does to first order 
approximate a multi-aperture antenna with three phase centers, where the impulse 
locations are the independent phase centers. 



- 33 - 

 

 
Figure 18.  The far-field pattern of a uniformly sampled aperture along with the notched pattern 
given by Eq. (47), and normalized notched pattern given by Eq. (48). 

 
Figure 19.  The far-field patterns of Figure 18 plotted on a linear scale, and zoomed to the region of 
the mainlobe of the sum pattern.  
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Some Comments About the Monopulse Slope for Odd Number of Samples 

The normalized monopulse slope at the center of the beam pattern for the odd number of 
samples is in fact given by 

2
11

2
slope

N
p  

= − − 
 

. (49) 

We observe that this is less than the ( )2π−  slope for all even numbers of samples, 
including for 2N = .  This seems to suggest that dividing the aperture into an odd number 
of samples is inherently inferior to dividing the same aperture into an even number of 
samples, owing to null being placed on the center sample of the delta channel aperture 
illumination function. 

However, it is important to note that the monopulse slope is not the whole story.  The real 
measure of performance is ultimately the accuracy and precision with which a DOA 
measurement can be made, i.e. the noise in the DOA measurement.  This is addressed in 
Appendix A, and will be further discussed later in this report. 

A sneak peak ahead, and at Appendix A, shows that DOA performance for 3N =  
actually is slightly improved over the case where N  is even, in spite of the less-steep 
monopulse slope. 
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6 Uniform Aperture Divided Into Subapertures 
We now modify our design criteria for a notched antenna pattern to embody the 
following characteristics. 

1. A true null with zero gain in a programmable (or processed) direction. 

2. A ‘notch’ around the null that is of minimum width. 

3. A gain in other directions that is as near to unity as possible within the 
neighborhood of the sum pattern mainlobe, subject to the constraint on the 
aperture illumination functions that they are a set of equally-spaced and equal-
area uniformly illuminated subapertures. 

( ) ( )
1

0

1 rect
N

n

n

x xp x p x
D D N

−

D Σ
=

 −
= =  

 
∑ , (50) 

except perhaps for the subaperture centered at 0x = .  Here, nx  are the centers of 
the subaperture positions in the overall aperture.  In addition, while we have 
scaled the rect functions by 1 D . This is for convenience and not essential to the 
significance of the results. 

Here we also constrain that any one elemental position in the sum pattern aperture 
exhibits the same magnitude gain as the respective elemental position in the notched 
pattern aperture, except perhaps for the subaperture centered at 0x = .  The phase 
between the two apertures may be significantly different.  As before, we define the 
sample positions as 

1
2n

D D Nx n
N N

− = −  
 

, (51) 

where the sample indexed positions are identified 

 n Integers∈ , where 0 n N≤ < . (52) 

Borrowing from the earlier analysis, we define the aperture illumination functions as 

( ) ( )
01 2

0

1 1sgn * rect
2

N j x

n

D D N N xp x x e x n
N N N D D N

θ
p
λ δ

−

D
=

  − = − +    
    

∑ , and 

( )
01 2

0

1 1 * rect
2

N j x

n

D D N N xp x e x n
N N N D D N

θ
p
λ δ

−

Σ
=

  − = − +    
    

∑ , (53) 

where “*” denotes convolution.  Note that these are equal-length segments formed by 
dividing the larger aperture into subapertures.  We have constructed these functions as 
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convolutions of the sample impulse functions from the previous sections.  This will allow 
us to build on the earlier analysis. Accordingly, we identify the Fourier Transform pair 

rect sincN x D
D D N N

θ
λ

    ⇔    
   

. (54) 

As before, for convenience, we will separately analyze the case of an even number of 
samples from the case of an odd number of samples. 

6.1 Even Number of Samples 

We now concern ourselves with only even values of N.  We repeat and slightly expand 
the aperture illumination functions as 

( )

0
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1 1
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, and 
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−
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  − = − +    
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∑ . (55) 

The corresponding antenna patterns can then be calculated in closed form as 
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. (56) 
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The normalized pattern is then calculated as 
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1 cos
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j P

θ θθ π
θθ λ

θλ θ θπλ θ

∆

∆ Σ

Σ
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. (57) 

The aperture illumination functions for 4N =  are illustrated in Figure 20.  The 
corresponding antenna pattern plots are given in Figure 21 and Figure 22. 

We make the following observations. 

• The normalized notch pattern, as well as the notch pattern itself (scaled to 
equivalent gain and unit reference beamwidth), exhibits a normalized monopulse 
slope of ( )2π−   at the center of the sum pattern, in the vicinity of the null.   

• This is essentially the same as the continuous uniform aperture.   

• The −5 dB notch width is 0.83, with normalized notch width of 0.65. 

• This aperture illumination function is quite realistic. 

  

 

 

 

 

 

 
Figure 20.  Aperture illumination for uniform sampled delta and sum channels. 
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( )p xΣ
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Figure 21.  The far-field pattern of uniform subaperture along with the notched pattern given by Eq. 
(56), and normalized notched pattern given by Eq. (57). 

 
Figure 22.  The far-field patterns of Figure 21 plotted on a linear scale, and zoomed to the region of 
the mainlobe of the sum pattern.  
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6.2 Odd Number of Samples 

We now concern ourselves with only odd values of N.  We note that with an odd number 
of subapertures, that the center subaperture falls at the center of the aperture, and will be 
nulled by the signum function in the notched pattern aperture illumination function.  The 
sum pattern aperture illumination function analysis is otherwise unaffected by even 
versus odd number of samples, so we will repeat it here for completeness.  Consequently, 
we repeat and slightly expand the aperture illumination functions as 

( )
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The corresponding closed-form antenna patterns can then be calculated as 
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The normalized pattern is calculated as 

0 0

0

1cos cos

sin

BW BW

BW

P N
P

j P

θ θ θ θθ ππ
θ θθ λ

θλ θ θπλ θ

∆

∆ Σ

Σ

       − −   −                         = = −         −            

. 

 (60) 

The aperture illumination functions for 3N =  are illustrated in Figure 23.  The 
corresponding antenna pattern plots are given in Figure 24 and Figure 25. 

We make the following observations. 

• The notched pattern for an odd number of samples approaches that for an even 
number of samples as N increases. 

• The normalized notch pattern, as well as the notch pattern itself (scaled to 
equivalent gain and unit reference beamwidth), exhibits a normalized monopulse 
slope of something less than ( )2π−   at the center of the sum pattern, in the 
vicinity of the null.  This is because of the zeroed center subaperture due to the 
null at 0x = . 

• The −5 dB notch width is 1.04, with normalized notch width of 0.73. 

• This aperture illumination function is quite realistic. 

 

 

 

 

 
Figure 23.  Aperture illumination for uniform sampled delta and sum channels. 

( )p x∆

( )p xΣ

x2D2D−



- 41 - 

 

 
Figure 24.  The far-field pattern of a uniformly sampled aperture along with the notched pattern 
given by Eq. (59), and normalized notched pattern given by Eq. (60). 

 
Figure 25.  The far-field patterns of Figure 24 plotted on a linear scale, and zoomed to the region of 
the mainlobe of the sum pattern.  
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“Learning isn't acquiring knowledge so much as it is trimming information that has 
already been acquired.” ― Criss Jami 
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7 Miscellaneous Discussion 
Here we address some miscellaneous questions, issues, and myths. 

7.1 Monopulse Slope is Everything… Not Really 

The notch width is directly related to monopulse slope, and the monopulse slope is 
certainly related to the noisiness of the DOA estimation. It is true that the noisiness of the 
DOA estimate is inversely proportional to monopulse slope if specific other parameters 
can be kept constant.  However that is not to be expected.   

One might ask “Why do we care about DOA estimation when we presume to know 
exactly the DOA of stationary clutter?”   

The answer to this is that this DOA noise is the uncertainty of where the clutter signal 
actually appears, regardless of where we place the null to filter the clutter. 

Nevertheless, one might be inclined to believe that the steeper the monopulse slope, the 
smaller our DOA noise, and the better would be our system performance.  However, this 
takes too simplistic a view regarding noise. 

We examine two cases. 

Case 1. 

Monopulse slope is a function of the baseline between antenna subaperture phase centers.  
However, although the noise in a DOA estimate (i.e. the noise that perturbs the DOA of a 
target or clutter) decreases for increasing baseline, if the baseline increase comes at a 
price of diminished overall aperture, then the DOA noise increase due to SNR loss will at 
times dominate.  This is addressed in Appendix A.  Consequently, it is quite possible that 
sometimes a steeper normalized monopulse slope will be accompanied with even noisier 
DOA estimates.  In these cases, this is not a good trade. 

Case 2. 
 
Monopulse slope is proportional to the signal gain of the notched pattern’s aperture.  
Simply scaling the signal from the aperture of the notched pattern relative to that of the 
sum would increase the monopulse slope.  However DOA noise depends on SNR.  
Consequently, simply scaling the aperture’s signal after the noise has been added will 
also scale its noise, and render the SNR unchanged.  In this case a steeper normalized 
monopulse slope will not result in improved DOA performance.  There is no benefit to 
system performance by simply scaling aperture signals. 
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7.2 Notch Width and Doppler Resolution 

The question we now concern ourselves with is “How well can we expect a DOA notch 
to filter radar scene clutter?” 

We begin by noting that in a focused range-Doppler map, clutter will occupy an 
individual resolution cell of nominal width that equals the angular resolution of the data.  
That is, the angular resolution of the clutter is 

2 sinDOA
CPI a sT v

λρ
θ

=  = angular resolution of Doppler data, (61) 

where 

CPIT  = coherent processing time interval, 

av  = horizontal radar velocity, 

sθ  = squint angle with respect to velocity vector, and 
λ  = nominal wavelength of radar signal. (62) 

To facilitate the following discussion, we zoom in on the notch displayed in Figure 21 
and render it in Figure 26.  From this figure, we measure the notch width at various 
attenuations with respect to the sum pattern peak response, and present them in Table 1. 

 
Figure 26.  Zoomed rendering of Figure 21. 
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Table 1.  Notch width profile in fractions of nominal beamwidth. 

Attenuation for Width Notch Pattern Normalized Notch Pattern 

−5 dB 0.83 0.65 

−10 dB 0.42 0.39 

−20 dB 0.13 0.13 

 
Suppose now that for a given attenuation level the normalized notch width is defined as 

η  = normalized notch width. (63) 

For example, η  takes on the values in Table 1 for the specified attenuation levels.  Then, 
to achieve the required attenuation for all clutter within a particular range-Doppler 
resolution cell, we require 

DOA BWρ η θ≤  . (64) 

More explicitly, this may be expanded and rearranged to identify a limit on the notch 
width such that it exceeds the Doppler width of a clutter resolution cell as 

2 sinBW CPI a sT v
λη

θ θ
≥  . (65) 

This then tells us the achievable attenuation.  We illustrate this with a pair of examples. 

Example 1 

Consider a radar operating with the parameters 

BWθ  = 0.05  (2.9 degrees), 

CPIT  = 0.1, 

av  = 50 m/s, 

sθ  = 4π   (45 degrees), 
λ  = 0.018. (66) 

The normalized notch width must then satisfy 

0.0509η ≥  . (67) 
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With the apertures of Figure 26, this corresponds to clutter attenuation by at least 28 dB 
at the edge of the resolution cell. 

Example 2 

Now consider the previous example except with a more forward squint angle, namely 

sθ  = 20π   (9 degrees). (68) 

The normalized notch width must now satisfy 

0.2301η ≥  . (69) 

With the same apertures of Figure 26, this corresponds to clutter attenuation by not quite 
15 dB at the edge of the resolution cell. 

Essentially, as we move to examine DOA away from broadside, our ability to suppress 
clutter diminishes.  More generally, as the clutter compresses into fewer Doppler 
resolution cells for whatever reason, our ability to cancel it with an antenna pattern null 
evaporates. 

7.3 More Notch Width and Doppler Resolution 

Here we present a more sophisticated model for discussing the notch width versus 
Doppler resolution.  This model has a strong relationship to a phenomenon inherent to 
Interferometric Synthetic Aperture Radar (IFSAR or InSAR) as reported by Bickel, et 
al.,7 and by Bickel,8  but uses an array processing mathematical approach adapted from 
Zatman.6   

We can define the appropriate notch width required for a given Doppler resolution cell 
with uniform clutter as the baseline separation that can be approximated as a spatial 
“narrowband” signal.  Following the argument by Zatman, we will declare the notch 
width to be inadequate when the second largest eigenvalue of the spatial covariance 
matrix between channels is large enough.  As in Zatman, we also say that this occurs 
when the second largest eigenvalue is larger than the noise (eigenvalue).  What follows is 
the mathematics that defines this model. 

Assume we have a uniform linear array (ULA) with characteristics 

D  = overall length of the array, and 
N  = number of subapertures. (70) 

From this, we calculate the array spacing 

d D N=  = the separation between subaperture centers. (71) 
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Also, if we assume that the clutter is stationary (i.e., no so-called “internal clutter motion” 
for example due to wind), then the angular spread of the resolution should follow the 
previous Eq. (61).  Under the assumption that the clutter is uniform across the resolution 
cell and following the method, the second eigenvalue of the spatial covariance matrix is 
given by 

( )2 1
2

cnrλ ψ = − 
 

. (72) 

where 

cnr  = the Clutter-to-Noise Ratio (CNR) for the sum channel (unitless), (73) 

and ψ will be defined below. 

For this development, instead of using Eq. (61), we will use the Doppler bandwidth, DfD , 
across the resolution cell as the inverse of the CPI time, namely 

1D CPIf TD = . (74) 

Then, defining the apparent phase difference between two pseudo-targets with the same 
statistics as the uniform clutter resolution cell as 

3 sin
D

as

f d
v

ψ π
θ

  D
D =      

, (75) 

we now identify ψ  as 

2 3 sin

2 3 si
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D
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, (76) 

or similarly, 
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. (77) 
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We could further tweak Eq. (77) by recalling that D Nd=  and noting that  

a a CPIL v T=  = length of the “synthetic aperture,” (78) 

however we will choose not do so at this point.  Note that Eq. (77) is the familiar 
Dirichlet function, also sometimes called the periodic sinc function, or aliased sinc 
function. 

Finally, similar to Zatman, we desire the condition that the signal to be nulled is 
sufficiently narrow-band in Doppler that it can in fact be adequately nulled, i.e. 
attenuated to the noise level.  This implies that we wish the second eigenvalue be 
adequately small, in fact, that the following condition is met, 

2 1λ < . (79) 

Combining these equations yields the condition 

sin

1 1
2

sin

2 3 sin

2 3 sin

as

as

CPI

CPI

Tcnr

N
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v

d
v T

π
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π
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  
     
  


     
     − <        

   
    

   

. (80) 

It is important to notice that this condition is a function of the CNR.  Higher CNRs make 
this condition more difficult to meet.   

The condition is also a function of the ratio of separations between the phase centers to 
the length of the “synthetic aperture”.  For those familiar with IFSAR, this latter result is 
not unfamiliar.  The implication of this is that larger antennas require finer resolution.  
This matches our intuition that larger antennas result in narrower nulls which result in 
lower MDV, but which may be too narrow to adequately null out a coarse (wide) Doppler 
resolution cell.  It should be emphasized that we are only considering spatial processing 
in this report.  Belaboring the point, similar concepts have been shown for IFSAR.8 

Eq. (79) can be rewritten in decibels as 
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 dB, (81) 

where 
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( )1010logCNR cnr=  = CNR in dB. (82) 

Some final transmogrifications yields the condition on CNR as 

10

sin

3.01 10log 1

si

2 3 sin

2 3 s
n

in

as

as

dN
L

d
L

CNR

N

π
θ

π
θ

     
  

  
     
  
  

 < − − 
   
  
    

  

 dB. (83) 

This suggests that for a given ratio of ( )ad L , there exists an upper bound on CNR.  This 

also suggests that for a given CNR, that there is a constraint on the ratio ( )ad L , also an 
upper bound. 

Example 

Assume we are imaging at broadside using two phase centers separated by d .  The 
required ratio ( )ad L   must be less than or equal to that shown in Figure 27 to adequately 
null the clutter in the resolution cell with a given CNR.  

 
Figure 27.  Maximum ad L  ratio to meet the nulling condition for given CNR. 
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7.4 Minimum Detectable Velocity 

Perhaps no other descriptor of performance more dominates discussion of GMTI modes 
than Minimum Detectable Velocity (MDV).  While strictly speaking we are quite capable 
of detecting targets even with zero velocity, what we really typically are interested in is 
“How slow can a moving target move in a line-of-sight direction, and still be discernable 
from stationary clutter?” 

Neglecting issues of Doppler resolution as discussed in the previous section, we observe 
that a moving target exhibiting some Doppler frequency will be discernable from 
stationary clutter at the same Doppler frequency by its DOA departing the expected value 
for the stationary clutter.  For slow-moving targets, the DOA difference is proportional to 
the target velocity.  That is 

sint a sv v θ θ∆=   = target line-of-sight velocity, (84) 

where 

θ∆   = DOA angle difference between target and clutter. (85) 

We will assume for convenience that positive DOA angle differences correspond to 
positive Doppler shifts, which in turn correspond to positive line-of-sight target velocity. 

We also define a normalized version of θ∆  as 

BW

θϕ
θ

∆
∆ =   = normalized DOA angle difference between target and clutter. (86) 

This normalized angle corresponds to the abscissa of the many far-field pattern plots 
given up to now in this report.  Nevertheless, we may equate 

sint a s BWv v θ θ ϕ∆= . (87) 

Determining MDV is now the following sequence of tasks. 

1. decide how much attenuation we are willing to tolerate in the normalized notch 
pattern,  

2. determine the corresponding normalized DOA angle difference that yields that 
level of attenuation, and 

3. calculating the corresponding target velocity via Eq. (85) and assign this to MDV. 

While this procedure will supply an MDV number, we stipulate that it is quite possible to 
detect some targets at velocities significantly less than this number.  Consequently, the 
MDV will be SNR (in the sum-channel) dependent.  Among other things, this means that 
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MDV will be range-dependent.  Details of how such an SNR may be calculated are given 
in a report by Doerry.9 

We illustrate with a pair of examples. 

Example 1 

Consider a GMTI radar with the following operating parameters. 

BWθ  = 0.05  (2.9 degrees), 

av  = 50 m/s, and 

sθ  = 4π   (45 degrees). (88) 

Furthermore, let the radar exhibit notch characteristics as rendered in Figure 26, and 
operating with a noise floor with a noise-equivalent Radar Cross Section (RCS) of −30 
dBsm.  Let us assume a detection criteria of at least 15 dB of SNR after clutter 
cancellation.   

Now consider a target representative of a dismount with RCS of −10 dBsm.  
Consequently, to detect this target we may tolerate only 5 dB of loss by the clutter filter.  
This suggests an allowable ϕ∆  of 0.325, which corresponds to an MDV of 0.57 m/s. 

Example 2 

Consider the same radar as the previous example, but now a target exhibiting an RCS of 
+5 dBsm. To detect this target we may tolerate 20 dB of loss by the clutter filter.  This 
suggests an allowable ϕ∆  of 0.065, which corresponds to an MDV of 0.11 m/s.  
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“Bottom line is, if you do not use it or need it, it's clutter, and it needs to go.”  
―  Charisse Ward 
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8 Conclusions 
We summarize several points herein as follows. 

• Multi-aperture or multi-subaperture antennas are fundamental to high-
performance GMTI systems, where targets need to be detected when their range-
Doppler response has similar characteristics to background clutter. 

• Multiple phase centers can be used to cancel stationary clutter, so as to 
discriminate slow moving targets.  An important question is “How well can 
multiple subapertures cancel clutter, and let moving target energy still pass?” 

• Real antennas have constraints on their physical extent.  The overall antenna 
width places a fundamental limit on the notch width use to cancel clutter. 

• More subapertures will not necessarily yield better performance, either in target 
detectability, or DOA performance against a single target. 

• Monopulse slope is directly related to notch width. 

• In general a larger monopulse slope is better, but not always.  DOA noise is 
related to monopulse slope, but not exclusively so.  Sometimes monopulse slope 
can be sacrificed for better (lower) DOA noise. 

• For good clutter cancellation, the angular width of a Doppler resolution cell must 
be small compared to the notch width.  Consequently, clutter cancellation 
becomes less effective as the radar squints away from broadside. 

• The Minimum Detectable Velocity for multiple subaperture antennas is a function 
of SNR in the sum beam.  Consequently, the MDV will depend on, among other 
things, target RCS and range. 

• We further stipulate that phase center separation sets monopulse slope vs. 
subaperture dimension that sets grating lobes vs. subaperture taper that sets 
subaperture array factor.  In addition, a linear phase ramp across (and between) 
subapertures steers the beam.  
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“When you have cleared all of your clutter,  
you can be of greater service to those around you.”   

― Michael B. Kitson 
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Appendix A – Direction of Arrival Noise 
We herein examine several issues regarding the noise in a Direction of Arrival (DOA) 
estimate.  Accordingly, we build on a paper by Doerry and Bickel.10  The underlying 
equation for the subsequent analysis is the familiar expression 

2DOA
effb SNR
λσ

π
= , (89) 

where 

λ  = nominal wavelength, 
effb  = the effective baseline between antenna phase centers, and 

SNR  = signal power/energy to noise power/energy ratio. (90) 

A tacit assumption here is that the SNR is for a single image due to one phase center in 
the interferometer. 

Trading Aperture for Baseline 

Consider an antenna that has available to it an aperture of width D, but divides it into two 
uniform subapertures with geometry as illustrated in Figure 28.   

Accordingly we define 

D = the available global antenna aperture length of the receive antenna, and 
α  = fractional width of individual subapertures. (91) 

Furthermore, we assign the individual subapertures to be equal to each other, except 
separated in location. 

 

 
Figure 28.  Geometry of aperture relating to baseline. 
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Accordingly, we identify the subaperture as 

subapD Da=  = the aperture length of a subaperture. (92) 

We may then identify the RMS noise in a DOA measurement with the expression 

1
DOA

eff subap

C
b D

s = , (93) 

where 

1C  = constant of proportionality that involves other radar parameters. (94) 

and the baseline separating the nominal subaperture positions as 

( )1eff subapb D D D a= − = − . (95) 

Combining these into the DOA RMS noise expression yields 

( ) ( )
1 1

3 2
1

1 1
DOA

C C
D D D

σ
α α α α

 
= =   − −   

. (96) 

We observe that the term in the square brackets of Eq.(94) can be interpreted as a figure 
of merit, with better performance for larger values.  That is 

( )1χ α α= −  = Figure of Merit for DOA noise versus subaperture width. (97) 

We plot this in Figure 29, and note that a clear maximum exists at 1 3α = .  This clearly 
shows that for our geometry of Figure 28, the minimum DOA noise is achieved when 

1 3α = .  In this case, the gap between subaperture edges is equal to the individual 
subaperture widths. 

It is also instructive to plot the equivalent SNR increase that this figure of merit 
represents with respect to the case where 1 2α = .  We do this in Figure 30, and note that 
the advantage of 1 3α =  is worth only a small fraction of a dB, over the case 1 2α = . 

This yields an important observation, namely 

• For a constrained pair of subapertures, an optimum is achieved by balancing the 
effects of baseline with the effects of subaperture widths.  Increasing/decreasing 
baseline at the expense decreasing/increasing subaperture length will cause a net 
increase in DOA noise.  This is undesirable. 
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Figure 29.  Figure of merit for subaperture size. 

 
Figure 30.  Plot of Figure 29 in dB relative to 1 2α = . 
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Example 1 

In particular, consider the case where we let 

( ) ( )1 2N Nα = − , (98) 

for odd integer values of N.  In this case, our figure of merit becomes 

( ) ( )
( )

( )
( )

1 1
1 1

2 2
N N

N N
χ α α

 − −
= − = −  

 
. (99) 

More importantly, χ  is maximized, and DOA noise is minimized, when 1 3α = , that is, 
when 3N = .   

For this case 3N = , the improvement is equivalent to about 0.18 dB of SNR 
improvement, or about a 9% baseline increase, compared to the case where 2N = .  
Interestingly, although the actual baseline increased by 33%, the reduction in SNR due to 
smaller apertures limits the sensitivity to as if the baseline were increased by only 9%, 
but it is still an increase. 
 

Monopulse Slope and Noise 

We return to the RMS noise in an interferometric DOA measurement described by the 
expression 

2DOA
effb SNR
λσ

π
= , (100) 

and recall that the SNR was for both transmitting and receiving on a subaperture.   

The actual angle calculation is given by 

2 effb
λθ f

π
= ∆  = DOA angle estimate, (101) 

where 

φ∆  = phase difference measured at ends of baseline effbθ = . (102) 

We now further identify 
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eff
eff

b
b

D
′ =  = effective baseline normalized to antenna aperture length, and 

BW D
λθ =  = nominal sum pattern beamwidth. (103) 

This allows us to write the normalized DOA angle as 

1
2BW effb

θ f
θ π

= ∆
′

 = normalized DOA angle estimate. (104) 

Now we turn our attention to the measured phase difference φ∆ , and recognize it as the 
expression 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

Im Im
atan atan

Re Re
P P P P
P P P P

θ λ θ λ θ λ θ λ
φ

θ λ θ λ θ λ θ λ
Σ ∆ Σ ∆

Σ ∆ Σ ∆

   − +
∆ = −      − +   

, (105) 

where 

( )P θ λΣ  = sum antenna pattern, and 

( )P θ λ∆  = notched antenna pattern. (106) 

We have constructed the interferometer such that a negative measured phase difference 
corresponds to a positive DOA.  Furthermore, we will assume that no additional phase 
slope is applied across the apertures to steer the beam away from its nominal broadside 
direction.  From the main body of this report, for real ( )P θ λΣ  and imaginary ( )P θ λ∆ , 
the phase difference then reduces to 

( )
( )

( )
( )

( )
( )

atan atan 2atan
P P P

jP jP jP
θ λ θ λ θ λ

φ
θ λ θ λ θ λ

∆ ∆ ∆

Σ Σ Σ

     −
∆ = − = −          

     
, (107) 

which may be written more compactly as 

( )( )2atan Pφ θ λ∆ Σ∆ = − . (108) 

For small angles (i.e. near the sum-beam center) this can be approximated as 

( )2Pφ θ λ∆ Σ∆ ≈ − . (109) 

The factor of two in this expression is why such a phase-comparison monopulse radar is 
sometimes called a “half-angle tracker.” 
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Nevertheless, this lets us write the normalized DOA estimate as 

( )1

BW eff
P

b
θ θ λ

θ π ∆ Σ
−

=
′

 . (110) 

We now define the normalized monopulse slope as 

( )
0

limMP eff
BW

P
m b

θ

θ l
π

θ θ
∆ Σ

→

 
′= = −  

 
 = normalized monopulse slope. (111) 

This allows us to write the normalized DOA estimate as 

( )1

BW MP
P

m
θ θ λ

θ ∆ Σ=  . (112) 

This in turn also allows us to write the DOA noise expression as 

2DOA
MPm SNR
λσ = . (113) 

It is essential to observe that the monopulse slope is a measure of baseline only, and 
consequently is not the whole story when it comes to DOA estimation noise. 

Example 2 

In particular, consider the case where we let 

1 2effb′ = . (114) 

This is equivalent to a sampled uniform aperture with 2N = .  From this we may 
calculate 

 
2MPm π

= − . (115) 

This is consistent with the analysis for a sampled uniform aperture where the actual slope 
at the center of the sum beam was calculated to be ( )2π− . 
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